CR- SUBMANIFOLDS OF A NEARLY TRANS-HYPERBOLIC SASAKIAN MANIFOLD WITH A QUARTER SYMMETRIC METRIC CONNECTION

Shamsur Rahman¹, Mohd Sadiq Khan², Aboo Horaira³

¹Department of Mathematics, Maulana Azad National Urdu University,
Polytechnic Satellite Campus Darbhanga Bihar 846001, India

^{2,3}Department of Mathematics, Shibli National PG College Azamgarh 276001, India
Elkathurthy - 505 476, Warangal Urban, Telangana, India
e-mail: shamsur@rediffmail.com

Abstract. We define a quarter symmetric metric connection in a nearly trans-hyperbolic sasakian manifold and we study CR- submanifolds of a nearly trans-hyperbolic sasakian manifold with a quarter symmetric metric connection. Moreover, we discuss the parallel distribution relating to ξ -vertical CR-submanifolds of a nearly trans-hyperbolic sasakian manifold with a quarter symmetric metric connection

Keywords: CR-submanifolds, nearly trans-hyperbolic sasakian manifold, quarter symmetric metric connection, Gauss and Weingarten equations parallel distributions.

AMS Subject Classification: 53D12, 53C05:

1. Introduction

A. Bejancu introduced the notion of CR-submanifolds of a Kaehler manifold in [5]. Latter, CR- submanifold have been studied by Kobayashi[1], Shahid et al. [18, 19], Yano and Kon [22] and others. Upadhyay and Dube [21] have studied almost contact hyperbolic (f,g,η,ξ) -structure, Dube and Mishra [9] have considered Hypersurfaces im-mersed in an almost hyperbolic Hermitian manifold also Dube and Niwas [10] worked with almost r-contact hyperbolic structure in a product manifold. Gherghe studied on harmonicity on nearly trans-Sasaki manifolds [11]. Bhatt and Dube [7] studied on CR-submanifolds of trans- hyperbolic Sasakian manifold. Joshi and Dube [14] studied on Semi-invariant submanifold of an almost r-contact hyperbolic metric manifold. Gill and Dube have also worked on CR submanifolds of trans-hyperbolic Sasakian manifolds [12].

Let ∇ be a linear connection in an *n*-dimensional differentiable manifold \overline{M} . The torsion tensor T and the curvature tensor R of ∇ are given respectively by [8]

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_X \nabla_Y Z - \nabla_{[X,Y]} Z$$

The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is metric if there is a Riemannian metric g in \overline{M} such that $\nabla g = 0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection. In [13], S. Golab introduced the idea of a quarter-symmetric connection. A linear connection is said to be a quarter-symmetric connection if its torsion tensor T is of the form

$$T(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y,$$

where η is a 1-form. In [2, 4], M. Ahmad et al. studied some properties of hypersurfaces of an almost r-paracontact Riemannian manifold with connections and also in [1, 3,15, 20] studied properties of CR-submanifolds of a nearly trans-Sasakian hyperbolic manifolds with connections.

2. Preliminaries

Let \overline{M} be an n dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure (ϕ, ξ, η, g) where a tensor ϕ of type (1, 1), a vector field ξ , called structure vector field and η , the dual 1-form of is a 1-form ξ satisfying the following

$$\phi^2 X = X - \eta(X)\xi, \quad g(X,\xi) = \eta(X) \tag{1}$$

$$\phi(\xi) = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = -1$$
 (2)

$$g(\phi X, \phi Y) = -g(X, Y) - \eta(X)\eta(Y), \tag{3}$$

for any X, Y tangents to \overline{M} [4]. In this case

$$g(\phi X, Y) = -g(X, \phi Y) \tag{4}$$

An almost hyperbolic contact metric structure (ϕ, ξ, η, g) on \overline{M} is called transhyperbolic Sasakian [6] if and only if

$$(\overline{\nabla}_X \phi) Y = \alpha \{ g(X, Y) \xi - \eta(Y) \phi X \} + \beta \{ g(\phi X, Y) \xi - \eta(Y) \phi X \}$$
 (5)

for all X, Y tangents to \overline{M} and α, β are functions on \overline{M} . On a trans-hyperbolic Sasakian manifold M, we have

$$\overline{\nabla}_X \xi = -\alpha(\phi X) + \beta \{X - \eta(X)\xi\} \tag{6}$$

a Riemannian metric g and Riemannian connection $\overline{\nabla}$.

Further, an almost contact metric manifold \overline{M} on (ϕ, ξ, η, g) is called nearly transhyperbolic Sasakian if [5]

$$(\overline{\nabla}_X \phi) Y + (\overline{\nabla}_Y \phi) X = \alpha \{ 2g(X, Y) \xi - \eta(Y) \phi X - \eta(X) \phi Y \} - \beta \{ \eta(X) \phi Y + \eta(Y) \phi X \}$$
 (7)

On other hand, a quarter symmetric metric connection $\overline{\nabla}$ on M is defined by

$$\overline{\nabla}_X Y = \overline{\nabla}_X^* Y + \eta(Y) \phi X - g(\phi X, Y) \xi \tag{8}$$

Using (2.1), (2.2) and (2.6) in (2.5) and (2.6), we get respectively

 $(\overline{\nabla}_X \phi) Y = \alpha \{ g(X, Y) \xi - \eta(Y) \phi X \}$

$$+\beta\{g(\phi X,Y)\xi-\eta(Y)\phi X\}+g(X,Y)\xi-\eta(Y)X+2\eta(X)\eta(Y)\xi\tag{9}$$

$$\overline{\nabla}_X \xi = -(\alpha + 1)\phi X + \beta \{X - \eta(X)\xi\}$$
(10)

In particular, an almost contact metric manifold \overline{M} on (ϕ, ξ, η, g) is called nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection if

$$(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X$$

$$= \alpha \{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta \{\eta(X)\phi Y + \eta(Y)\phi X\}$$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi \quad (11)$$

Now, let M be a submanifold immersed in \overline{M} . The Riemannian metric induced on M is denoted by the same symbol g. Let TM and $T^{\perp}M$ be the Lie algebras of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connection on M, then the Gauss and

Weingarten formulas for the quarter symmetric metric connection are given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{12}$$

$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N + \eta(N) \phi X \tag{13}$$

for any $X, Y \in TM$ and $V \in T^{\perp}M$, where ∇^{\perp} is the connection on the normal bundle $T^{\perp}M$, h is the second fundamental form and A_N is the Weingarten map associated with N as

$$g(A_N X, Y) = g(h(X, Y), N)$$
(14)

For any $x \in M$ and $X \in T_X M$, we write

$$X = PX + QX \tag{15}$$

where $PX \in D$ and $QX \in D^{\perp}$.

Similarly for N normal to M, we have

$$\phi N = BN + CN \tag{16}$$

where BN (respectly CN) is the tangential component (respectly normal component) of ϕN .

Definition. An m dimensional Riemannian submanifold M of \overline{M} is called a CR-submanifold of M if there exists a differentiable distribution $D: x \to D_X$ on M satisfying the following conditions:

- (i) D is invariant, that is $\phi D_X \subset D_X$ for each $x \in M$,
- (ii) The complementary orthogonal distribution $D^\perp\colon X\to \mathrm{D}_X^\perp\subset T_XM$ of D is anti-invariant, that is, $\phi\mathrm{D}_X^\perp\subset \mathrm{T}_X^\perp M$ for each $x\in M$. If $\dim\mathrm{D}_X^\perp=0$ (respectly $\dim D_X=0$), then the CR-submanifold is called an invariant (respectly, anti-invariant) submanifold. The distribution D (respectly, D^\perp) is called the horizontal (respectly, vertical) distribution. Also, the pair (D,D^\perp) is called ξ -horizontal (respectly, vertical) if $\xi_X\in D_{X-}$ (respectly, $\xi_X\in\mathrm{D}_X^\perp$).

3. Some basic lemmas

Lemma 1. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, then

$$P(\nabla_X \phi PY) + P(\nabla_Y \phi PX) - PA_{\phi QY}X - PA_{\phi QX}Y$$

$$= 2(\alpha + 1)g(X, Y)P\xi - \alpha\eta(Y)\phi PX - \alpha\eta(X)\phi PY - \beta\eta(Y)\phi PX -$$
(17)

 $\beta n(X) \phi PY$

$$-\eta(X)PY - \eta(Y)PX + 4\eta(X)\eta(Y)P\xi + \phi P\nabla_X Y +$$

 $\phi P \nabla_Y X$

$$Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - QA_{\phi QY}X - QA_{\phi QX}Y$$

$$= 2Bh(X,Y) + 2(\alpha + 1)g(X,Y)Q\xi - \alpha\eta(Y)\phi QX - \alpha\eta(X)\phi QY$$

$$-\eta(X)QY - \eta(Y)QX + 4\eta(X)\eta(Y)Q\xi$$
(18)

$$h(X, \phi PY) + h(Y, \phi PX) + \nabla_X^{\perp} \phi QY + \nabla_Y^{\perp} \phi QX$$

$$= \phi Q \nabla_Y X + \phi Q \nabla_X Y + 2Ch(X, Y) - \beta \eta(Y) \phi QX - \beta \eta(X) \phi QY$$
(19)

for any X, $Y \in TM$. **Proof.** Using (4), (9) and (10) in (11) we get

$$(\nabla_X \phi PY) + h(X, \phi PY) - A_{\phi QY}X + \nabla_X^{\perp} \phi QY - \phi(\nabla_X Y) - \phi h(X, Y)$$

$$+(\nabla_Y \phi PX) + h(Y, \phi PX) - A_{\phi QX}Y + \nabla_Y^{\perp} \phi QX - \phi(\nabla_Y X) - \phi h(Y, X)$$

$$= \alpha \{2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta \{\eta(X)\phi Y + \eta(Y)\phi X\}$$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X, Y)\xi$$

Again using (15) we get

$$P(\nabla_{X}\phi PY) + P(\nabla_{Y}\phi PX) - PA_{\phi QY}X - PA_{\phi QX}Y - \phi P\nabla_{X}Y$$

$$-\phi Q\nabla_{X}Y - \phi P\nabla_{Y}X - \phi Q\nabla_{Y}X + Q(\nabla_{X}\phi PY) + Q(\nabla_{Y}\phi PX)$$

$$-QA_{\phi QY}X - QA_{\phi QX}Y + h(X, \phi PY) + h(Y, \phi PX) + \nabla_{X}^{\perp}\phi QY$$

$$+\nabla_{Y}^{\perp}\phi QX - 2Bh(X,Y) - 2Ch(X,Y) = 2\alpha g(X,Y)P\xi$$

$$+2\alpha g(X,Y)Q\xi - \alpha \eta(Y)\phi PX - \alpha \eta(Y)\phi QX - \alpha \eta(X)\phi PY$$

$$-\alpha \eta(X)\phi QY - \beta \eta(Y)\phi PX - \beta \eta(Y)\phi QX - \beta \eta(X)\phi PY$$

$$-\beta \eta(X)\phi QY - \eta(X)PY - \eta(X)QY - \eta(Y)PX - \eta(Y)QX$$

$$+4\eta(X)\eta(Y)P\xi + 4\eta(X)\eta(Y)Q\xi + 2g(X,Y)P\xi + 2g(X,Y)Q\xi$$

$$(20)$$

for any $X, Y \in TM$.

Now equating horizontal, vertical, and normal components in (20), we get the desired result.

Lemma 2. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, then

$$2(\overline{\nabla}_{X}\phi)Y = \nabla_{X}\phi Y - \nabla_{Y}\phi X + h(X,\phi Y) - h(Y,\phi X) - \phi[X,Y]$$

$$+\alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\}$$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi$$

$$(21)$$

$$2(\overline{\nabla}_{Y}\phi)X = \alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\}$$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi - \overline{\nabla}_{X}\phi Y + \overline{\nabla}_{Y}\phi X$$

$$-h(X,\phi Y) + h(Y,\phi X) + \phi[X,Y]$$
(22)

Proof. From Gauss formula (12), we have

$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X)$$
(23)

Also we have

$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = (\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X + \phi [X, Y]$$
 (24)

From (22) and (23), we get

$$(\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X) - \phi [X, Y]$$
 (25)

Also for nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, we have

$$(\overline{\nabla}_X \phi)Y + (\overline{\nabla}_Y \phi)X$$

$$= \alpha \{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta \{\eta(X)\phi Y + \eta(Y)\phi X\}$$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi \quad (26)$$

Adding (3.9) and (3.10), we get

$$2(\overline{\nabla}_X\phi)Y = \nabla_X\phi Y - \nabla_Y\phi X + h(X,\phi Y) - h(Y,\phi X) - \phi[X,Y] + \alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y\} + \beta\{\eta(X)\phi Y\} - \beta\{\eta(X)\phi Y\} -$$

 $\eta(Y)\phi X$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi$$

Subtracting (25) from (26) we get

$$2(\nabla_{Y}\phi)X = \alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\} - \eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi - \nabla_{X}\phi Y + \eta(Y)\phi X\}$$

 $\nabla_Y \phi X$

$$-h(X, \phi Y) + h(Y, \phi X) + \phi[X, Y]$$

Hence Lemma is proved.

Lemma 3. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, then

$$\begin{split} 2(\overline{\nabla}_{Y}\phi)(Z) &= \mathbf{A}_{\phi Y}Z - \mathbf{A}_{\phi Z}Y - \nabla_{Z}^{\perp}\phi Y + \nabla_{Y}^{\perp}\phi Z - \phi[Y,Z] \\ &+ \alpha\{2g(Y,Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} \\ &- \eta(Y)Z - \eta(Z)Y + 4\eta(Y)\eta(Z)\xi + 2g(Y,Z)\xi \\ 2(\overline{\nabla}_{Z}\phi)Y &= \alpha\{2g(Y,Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} \\ &- \eta(Y)Z - \eta(Z)Y + 4\eta(Y)\eta(Z)\xi + 2g(Y,Z)\xi - \mathbf{A}_{\phi Y}Z + \mathbf{A}_{\phi Z}Y \\ &+ \nabla_{Z}^{\perp}\phi Y - \nabla_{Y}^{\perp}\phi Z + \phi[Y,Z] \end{split}$$

for any $Y, Z \in D^{\perp}$.

Proof. From Weingarten formula (13), we have

$$\overline{\nabla}_{Z}\phi Y - \overline{\nabla}_{Y}\phi Z = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_{Y}^{\perp}\phi Z - \nabla_{Z}^{\perp}\phi Y \tag{27}$$

Also, we have

$$\overline{\nabla}_{Z}\phi Y - \overline{\nabla}_{Y}\phi Z = (\overline{\nabla}_{Y}\phi)Z - (\overline{\nabla}_{Z}\phi)Y + \phi[Y, Z]$$
(28)

From (27) and (28), we get

$$(\overline{\nabla}_{Y}\phi)Z - (\overline{\nabla}_{Z}\phi)Y = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_{Y}^{\perp}\phi Z - \nabla_{Z}^{\perp}\phi - \phi[Y, Z]$$
(29)

Also for nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, we have

$$(\overline{\nabla}_{Y}\phi)Z + (\overline{\nabla}_{Z}\phi)Y = \alpha\{2g(Y,Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} - \eta(Y)Z - \eta(Z)Y + 4\eta(Y)\eta(Z)\xi + 2g(Y,Z)\xi$$
(30)

Adding (29) and (30), we get

$$\begin{split} 2(\overline{\nabla}_{Y}\phi)(Z) &= A_{\phi Y}Z - A_{\phi Z}Y - \nabla_{Z}^{\perp}\phi Y + \nabla_{Y}^{\perp}\phi Z - \phi[Y,Z] \\ &+ \alpha\{2g(Y,Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} \\ &- \eta(Y)Z - \eta(Z)Y + 4\eta(Y)\eta(Z)\xi + 2g(Y,Z)\xi \end{split}$$

Subtracting (29) from (30) we get

$$\begin{split} 2(\overline{\nabla}_Z\phi)Y &= \alpha\{2g(Y,Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} \\ &- \eta(Y)Z - \eta(Z)Y + 4\eta(Y)\eta(Z)\xi + 2g(Y,Z)\xi - A_{\phi Y}Z \\ &+ A_{\phi Z}Y + \nabla_Z^1\phi Y - \nabla_Y^1\phi Z + \phi[Y,Z] \end{split}$$

This proves our assertions.

Lemma 4. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, then

$$2(\overline{\nabla}_{X}\phi)Y = \alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(Y)\phi X + \eta(X)\phi Y\} - \eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi - A_{\phi Y}X + \eta(X)\phi Y\}$$

 $\nabla_X^{\perp} \phi Y$

$$\begin{aligned} & -\nabla_Y \phi X - h(Y,\phi X) - \phi[X,Y] \\ 2(\overline{\nabla}_Y \phi) X &= \alpha \{ 2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y \} - \beta \{ \eta(Y)\phi X + \eta(X)\phi Y \} \\ & - \eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi + A_{\phi Y}X - \theta Y \} \end{aligned}$$

 $\nabla_X^{\perp} \phi Y$

$$+\nabla_Y \phi X + h(Y, \phi X) + \phi[X, Y]$$

for any $X \in D$ and $Y \in D^{\perp}$.

Proof. By using Gauss equation and Weingarten equation for $X \in D$ and $Y \in D^{\perp}$ respectively we get

$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X - h(Y, \phi X) \tag{31}$$

Also, we have

$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = (\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X + \phi [X, Y]$$
(32)

From (31) and (32), we get

$$(\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi [X, Y]$$
(33)

Also for nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection, we have

$$(\overline{\nabla}_X\phi)Y+(\overline{\nabla}_Y\phi)X=\alpha\{2g(X,Y)\xi-\eta(Y)\phi X-\eta(X)\phi Y\}-\beta\{\eta(X)\phi Y+\eta(Y)\phi X\} \eqno(34)$$

$$-\eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi$$

Adding (33) and (34), we get

$$\begin{split} 2(\overline{\nabla}_X\phi)Y &= \alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(Y)\phi X + \eta(X)\phi Y\} \\ &- \eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi - \mathbf{A}_{\phi Y}X + \nabla^{\perp}_X\phi Y \\ &- \nabla_Y\phi X - h(Y,\phi X) - \phi[X,Y] \end{split}$$

Subtracting (25) from (26) we get

$$2(\overline{\nabla}_{Y}\phi)X = \alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(Y)\phi X + \eta(X)\phi Y\} - \eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi + A_{\phi Y}X - \nabla_{X}^{\perp}\phi Y + \nabla_{Y}\phi X + h(Y,\phi X) + \phi[X,Y]$$

Hence Lemma is proved.

4. Parallel distributions

Definition. The horizontal (respectly, vertical) distribution D (respectly, D^{\perp}) is said to be parallel [1] with respect to the connection on M if $\nabla_X Y \in D$ (respectly, $\nabla_Z W \in D^{\perp}$) for any vector field $X, Y \in D$ (respectly, $W, Z \in D^{\perp}$).

Proposition 1. If M be a ξ -vertical CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} with a quarter symmetric metric connection and the horizontal distribution D is parallel, then

$$h(X, \phi Y) = h(Y, \phi X) \tag{35}$$

for all X, $Y \in D$.

Proof. Using parallelism of horizontal distribution D, we have

$$\nabla_X \phi Y \in D, \ \nabla_Y \phi X \in D \quad \text{for any } X, \ Y \in D.$$
 (36)

Thus using the fact that X = QY = 0 for $Y \in D$, (18) gives

$$Bh(X,Y) = g(X,Y)Q\xi \quad \text{for any } X, Y \in D.$$
 (37)

Also, since

$$\phi h(X,Y) = Bh(X,Y) + Ch(X,Y), \tag{38}$$

then

$$\phi h(X,Y) = g(X,Y)Q\xi + Ch(X,Y) \text{ for any } X, Y \in D.$$
(39)

Next from (19), we have

$$h(X, \phi Y) + h(Y, \phi X) = 2Ch(X, Y) = 2\phi h(X, Y) - 2g(X, Y)Q\xi, \tag{40}$$

for any X, $Y \in D$. Putting $X = \phi X \in D$ in (40), we get

$$h(\phi X, \phi Y) + h(Y, \phi^2 X) = 2\phi h(\phi X, Y) - 2g(\phi X, Y)Q\xi \tag{41}$$

or

$$h(\phi X, \phi Y) - h(Y, X) = 2\phi h(\phi X, Y) - 2g(\phi X, Y)Q\xi \tag{42}$$

Similarly, putting $Y = \phi Y \in D$ in (4.6), we get

$$h(\phi Y, \phi X) - h(X, Y) = 2\phi h(X, \phi Y) - 2g(X, \phi Y)Q\xi. \tag{43}$$

Hence from (42) and (43), we have

$$\phi h(X, \phi Y) - \phi h(Y, \phi X) = g(X, \phi Y)Q\xi - g(\phi X, Y)Q\xi \tag{44}$$

Operating ϕ on both sides of (4.10) and using $\phi \xi = 0$, we get

$$h(X, \phi Y) = h(Y, \phi X) \tag{45}$$

for all X, $Y \in D$.

Now, for the distribution D^{\perp} , we prove the following proposition.

Proposition 2. If M be a ξ -vertical CR-submanifold of a nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection and the distribution D^{\perp} is parallel with respect to the connection on M, then

$$A_{\phi Y}Z + A_{\phi Z}Y \in D^{\perp} \text{ for any } Y, Z \in D^{\perp}.$$
 (46)

Proof. Let $Z \in D^{\perp}$, then using Gauss and Weingarten formula (2.10), we obtain

$$-A_{\phi Z}Y + \nabla_Y^{\perp}\phi Z - A_{\phi Y}Z + \nabla_Z^{\perp}\phi Y = \phi\nabla_Y Z + \phi h(Y,Z) + \phi\nabla_Z Y + \phi h(Z,Y)$$

$$+\alpha\{2g(Y,Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} - \eta(Y)Z - \eta(Z)Y + 4\eta(Y)\eta(Z)\xi + 2g(Y,Z)\xi$$
(47)

for any $Y, Z \in D^{\perp}$. Taking inner product with $X \in D$ in (47), we get

$$g(A_{\phi Y}Z,X) + g(A_{\phi Z}Y,X) = g(\nabla_Y Z,\phi X) + g(\nabla_Z Y,\phi X)$$
(48)

But the distribution D^{\perp} is parallel, then $\nabla_Y Z \in D^{\perp}$ and $\nabla_Z Y \in D^{\perp}$, for any $Y, Z \in D^{\perp}$. Thus from (48) we have

$$g(A_{\phi Y}Z, X) + g(A_{\phi Z}Y, X) = 0$$
 or $g(A_{\phi Y}Z + A_{\phi Z}Y, X) = 0$ (49) which is equivalent to

 $A_{\phi Y}Z + A_{\phi Z}Y \in D^{\perp}$ for any $Y, Z \in D^{\perp}$

and this completes the proof.

Definition: A CR-submanifold M of a nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection is said to be totally geodesic if h(X,Y)=0 for $X\in D$ and $Y\in D^{\perp}$.

It follows immediately that a CR-submanifold is mixed totally geodesic if and only if $A_NX \in D$ for each $X \in D$ and $N \in T^{\perp}M$.

Let $X \in D$ and $Y \in \phi D^{\perp}$. For a mixed totally geodesic ξ -vertical CR-submanifold M of a nearly trans hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection then from (9), we have

$$(\overline{\nabla}_X \phi) N = 0$$

Since $\overline{\nabla}_X \phi N = (\overline{\nabla}_X \phi) N + \phi(\overline{\nabla}_X N)$ so that $\overline{\nabla}_X \phi N = \phi(\overline{\nabla}_X N)$.

Hence in view of (2.13), we get

$$\overline{\nabla}_X \phi N = -A_{\phi N} X + \nabla_X^{\perp} \phi N = -\phi A_N X + \phi \nabla_X^{\perp} N$$

As $A_N X \in D$, $\phi A_N X \in D$, so $\phi \nabla_X^{\perp} N = 0$ if and only if $\overline{\nabla}_X \phi N \in D$.

Thus we have the following proposition.

Proposition3. If M be a mixed totally geodesic ξ -vertical CR-submanifold of a nearly trans hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, then the normal section $N \in \phi D^{\perp}$ is D parallel if and only if $\nabla_X \phi N \in D$ for all $X \in D$.

5. Integrability conditions of distributions

Lemma 5.1. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, then

$$(\overline{\nabla}_{\phi X}\phi)Y = 2(\alpha + 1)g(\phi X, Y)\xi - (\alpha + \beta)\eta(Y)X + (\alpha + \beta)\eta(X)\eta(Y)\xi -\eta(Y)\phi X + \eta(X)\overline{\nabla}_{Y}\xi + \phi(\overline{\nabla}_{Y}\phi)(X) - \eta(\overline{\nabla}_{Y}X)\xi$$
 (50)

for any $X, Y \in TM$.

Proof. For nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, we have

$$(\overline{\nabla}_{\phi X}\phi)Y = 2(\alpha+1)g(\phi X,Y)\xi - (\alpha+\beta)\eta(Y)X + (\alpha+\beta)\eta(X)\eta(Y)\xi - \eta(Y)\phi X$$
(51)

and we have

$$(\overline{\nabla}_{Y}\phi)\phi X = \overline{\nabla}_{Y}\phi^{2}X - \phi(\overline{\nabla}_{Y}\phi X) = \overline{\nabla}_{Y}\phi^{2}X - \phi(\overline{\nabla}_{Y}\phi X) + \phi(\phi\overline{\nabla}_{Y}X) - \phi(\phi\overline{\nabla}_{Y}X)$$

$$= \overline{\nabla}_{Y}X - \eta(X)\overline{\nabla}_{Y}\xi - \phi(\overline{\nabla}_{Y}\phi X - \phi\overline{\nabla}_{Y}X) - \phi(\phi\overline{\nabla}_{Y}X)$$

$$(\overline{\nabla}_{Y}\phi)\phi X = -\eta(X)\overline{\nabla}_{Y}\xi - \phi(\overline{\nabla}_{Y}\phi)(X) + \eta(\phi\overline{\nabla}_{Y}X)\xi$$

$$(52)$$

by (52) in (51), we have

$$(\overline{\nabla}_{\phi X}\phi)Y = 2(\alpha+1)g(\phi X, Y)\xi - (\alpha+\beta)\eta(Y)X + (\alpha+\beta)\eta(X)\eta(Y)\xi$$
(53)

$$-\eta(Y)\phi X + \eta(X)\overline{\nabla}_{Y}\xi + \phi(\overline{\nabla}_{Y}\phi)(X) - \eta(\overline{\nabla}_{Y}X)\xi$$

for any $X,Y \in TM$, which completes the proof of the lemma. On a nearly transhyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, Nijenhuis tensor is given by

$$N_{\phi}(X,Y) = (\overline{\nabla}_{\phi X}\phi)Y - (\overline{\nabla}_{\phi Y}\phi)X - \phi(\overline{\nabla}_{X}\phi)Y + \phi(\overline{\nabla}_{Y}\phi)X$$
for any $X,Y \in TM$. (54)

As of (50) and (54), we have

$$N_{\phi}(X,Y) = 4(\alpha+1)g(\phi X,Y)\xi + (\alpha+\beta)\eta(Y)X + 3(\alpha+\beta)\eta(X)Y + \eta(Y)\phi X$$

$$+3\eta(X)\phi Y - 4(\alpha+\beta)\eta(X)\eta(Y)\xi + \eta(X)\overline{\nabla}_Y\xi - \eta(Y)\overline{\nabla}_X\xi - \eta(Y)\overline{\nabla}_X\xi$$

 $\eta(\overline{\nabla}_Y X)\xi$

$$+\eta(\overline{\nabla}_X Y)\xi + 4\phi(\overline{\nabla}_Y \phi)X$$

Proposition 5.2. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, then

$$(A_{\phi Y}Z - A_{\phi Z}Y) = \phi P[Y, Z] + (2\alpha + 3)[\eta(Y)Z - \eta(Z)Y] + (\alpha + \beta)[\eta(Z)\phi PY - \eta(Y)\phi Z] - 2(\alpha + \beta)g(\phi PZ, Y)P\xi$$
 (55) for any $Y, Z \in D^{\perp}$.

Proof: For $Y, Z \in D^{\perp}$ and $X \in T(M)$, we have

$$2g(A_{\phi Z}Y, X) = 2g(h(X, Y), \phi Z) = g(h(X, Y), \phi Z) + g(h(X, Y), \phi Z)$$
$$= g(\overline{\nabla}_X Y, \phi Z) + g(\overline{\nabla}_Y X, \phi Z) = g(\overline{\nabla}_X Y + \overline{\nabla}_Y X, \phi Z)$$
(56)

$$= g(\phi(\overline{\nabla}_XY + \overline{\nabla}_YX), Z) = -g(\overline{\nabla}_X\phi Y + \overline{\nabla}_Y\phi X - (\overline{\nabla}_X\phi)Y - (\overline{\nabla}_Y\phi)X, Z)$$

$$= -g(\overline{\nabla}_X\phi Y, Z) - g(\overline{\nabla}_Y\phi X, Z) + g(\alpha\{2g(X,Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\} - \eta(X)Y - \eta(Y)X + 4\eta(X)\eta(Y)\xi + 2g(X,Y)\xi, Z)$$

$$= g(A_{\phi Y}Z, X) - g(\phi(\overline{\nabla}_YZ), X) + 2\alpha g(\eta(Z)Y, X) + \alpha g(\eta(Y)\phi Z, X)$$

$$-\alpha g(g(\phi Y, Z)\xi, X) - \beta g(g(\phi Y, Z)\xi, X) + \beta g(\eta(Y)\phi Z, X)$$

$$-g(g(Y, Z)\xi, X) - g(\eta(Y)Z, X) + 4g(\eta(Y)\eta(Z)\xi, X) + \beta g(\eta(Y)\eta(Z)\xi, X)$$

 $2g(\eta(Z)Y,X)$

The above equation is true for all $X \in T(M)$, therefore transvecting the vector field X both sides, we have

$$A_{\phi Z}Y = A_{\phi Y}Z - \phi \overline{\nabla}_{Y}Z + 2\alpha\eta(Z)Y + \alpha\eta(Y)\phi Z - \alpha g(\phi Y, Z)\xi -\beta g(\phi Y, Z)\xi + \beta\eta(Y)\phi Z - g(Y, Z)\xi - \eta(Y)Z + 4\eta(Y)\eta(Z)\xi + 2\eta(Z)Y$$
 (57)

for any $Y, Z \in D^{\perp}$. Interchanging the vector fields Y and Z, we get

$$2A_{\phi Y}Z = A_{\phi Z}Y - \phi \overline{\nabla}_{Z}Y + 2\alpha\eta(Y)Z + \alpha\eta(Z)\phi Y - \alpha g(\phi Z, Y)\xi$$

$$-\beta g(\phi Z, Y)\xi + \beta n(Z)\phi Y - g(Z, Y)\xi - n(Z)Y + 4n(Y)n(Z)\xi +$$
(58)

 $2\eta(Y)Z$

Subtracting (57) and (58), we get

$$3(A_{\phi Y}Z - A_{\phi Z}Y) = \phi P[Y, Z] + (2\alpha + 3)[\eta(Y)Z - \eta(Z)Y]$$

$$+(\alpha + \beta)[\eta(Z)\phi PY - \eta(Y)\phi Z] - 2(\alpha + \beta)g(\phi PZ, Y)P\xi$$
(59)

for any $Y, Z \in D^{\perp}$.

Theorem 5.1. If M be a CR-submanifold of a nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, then the distribution D^{\perp} is integrable if and only if

$$3\left(A_{\phi Y}Z - A_{\phi Z}Y\right) = \left(\frac{2\alpha + 3}{3}\right) \left[\eta(Y)Z - \eta(Z)Y\right] \tag{60}$$

Proof: Primary suppose that the distribution D^{\perp} is integrable. Then $[Y,Z] \in D$ for any $Y,Z \in D^{\perp}$. Since P is a projection operator on D, so P[Y,Z] = 0. Thus from (55) we get (60). Conversely, we suppose that (60) holds. Then using (55), we have $\phi P[Y,Z] = 0$ for any $Y,Z \in D^{\perp}$. Since $rank \phi = 2n$. Therefore, either P[Y,Z] = 0 or $P[Y,Z] = k\xi$. But $P[Y,Z] = k\xi$ is not possible as P is a projection operator on D. Thus, P[Y,Z] = 0, which is equivalent to $[Y,Z] \in D^{\perp}$ for any $Y,Z \in D^{\perp}$ and hence D^{\perp} is integrable.

Corollary 5.1. If M be a ξ -horizontal CR-submanifold of a nearly trans-hyperbolic Sasakian Manifold \overline{M} with a quarter symmetric metric connection, then the distribution D^{\perp} is integrable if and only if

$$A_{\phi Y}Z - A_{\phi Z}Y = 0 \tag{61}$$

REFERENCES

- 1. Ahmad M., CR-submanifolds of a Lorentzian para Sasakian manifold manifolds with a quarter symmetric metric connection, Bull. Korean Math. Soc., 2012, 49 (1), pp.25-32.
- 2. Ahmad M., Jun J.B., Haseeb A. Hypersurfaces of almost r-paracontact Riemannian manifold endowed with quarter-symmetric metric connection, Bull. Korean Math. Soc., 2009, 46 (3), pp.477-487.
- 3. Ahmad M., Ojha J.P., Siddiqi M.D. CR-submanifolds of a nearly trans-Sasakian manifolds with a quarter symmetric non-metric connection, IOSR J. Math., 2014, 10 (3), pp.8-15.
- 4. Ahmad M., Ozgur C., Haseeb A. Hypersurfaces of almost r-paracontact Riemannian manifold endowed with quarter-symmetric non-metric connection, Kyungpook Math. J., 2009, 49, pp.533-543.
- 5. Bejancu A. CR submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc., 1978, 69, pp.135–142.
- 6. Bejancu A., Papaghuic N. CR-submanifolds of Kenmotsu manifold, Rend. Mat., 1984, 7, pp.607–622.
- 7. Bhatt L., Dube K.K. On CR-submanifolds of a trans-hyperbolic Sasakian manifold, Acta Ciencia Indica, 2003, 31, pp.91–96.
- 8. Blair D.E. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 1976.
- 9. Dube K.K., Mishra M.M. Hypersurfaces immersed in an almost hyperbolic Hermitian manifold, Competes Rendus of Bulgarian Acad. of Sci., 1981, 34 (10), pp.1343–1345.
- 10. Dube K.K., Niwas R. Almost r-contact hyperbolic structure in a product manifold, Demonstratio Math., 1978, 11, pp.887–897.
- 11. Gherghe Harmonicity on nearly trans-Sasaki manifolds, Demonstratio Math., 2000,33, pp.151–157.
- 12. Gill H.S., Dube K.K. On CR submanifolds of trans-hyperbolic Sasakian manifolds, Demonstratio Math., 2005,38, pp.953–960.
- 13. Golab S. On semi-symmetric and quarter-symmetric linear connections. Tensor N. S., 1975, 29, pp.249-254.
- 14. Joshi N.K., Dube K.K. Semi-invariant submanifold of an almost r-contact hyperbolic metric manifold, Demonstratio Math., 2001,36, pp.135–143.
- 15. Jun J.B., Ahmad M., Haseeb A. CR-submanifolds of a nearly transhyperbolic Sasakian manifolds with a quarter symmetric non-metric connection, JP Journal of Geometry and Topology, 2015, 17 (1), pp.1-15.
- 16. Kobayashi M., CR submanifolds of a Sasakian manifold, Tensor (N.S.), 1981, 35 (3), pp.297–307.
- 17. Rahman S. Some properties of hyperbolic contact manifold in a quasi sasakian manifold, TWMS J. App. Eng. Math., 2011, 1 (1), pp.41-48.

- 18. Shahid M., Sharfuddin A., Husain S.A. CR-submanifolds of a Sasakian manifold, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 1985, 15 (1), pp.263–278.
- 19. Shahid M.H. CR-submanifolds of a trans-Sasakian manifold, Indian J. Pure Appl. Math., 1991, 22, pp.1007–1012.
- 20. Siddiqi M.D., Ahmad M. CR-submanifolds of a nearly trans-Sasakian hyperbolic manifolds with a semi-symmetric non-metric connection, African Diaspora Journal of Mathematics, 2014, 17 (1), pp.93-105.
- 21. Upadhyay M.D., Dube K.K. Almost contact hyperbolic (f, g, η, ξ) -structure, Acta. Math. Acad. Scient. Hung., Tomus, 1976, 28, pp.1–4.
- 22. Yano K., Kon M. Contact CR submanifolds, Kodai Math. J., 1982, 5 (2), pp.238–252.